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Abstract—This paper explores the engineering of secure
and resilient systems through a detailed examination of
security strategies and principles as presented in
Appendix F of the recently published National Institute of
Standards and Technology Special Publication (NIST SP)
800-160. First, a brief introduction to systems security
engineering is provided with recommended readings for
those who desire to become more familiar with the specialty
domain. Next, the NIST SP 800-160 Appendix F systems
security strategies and principles are described, as well as,
examined for implementation considerations. This
examination and mapping provides a linkage of abstract
security strategies to concrete security principles which can
be more directly implemented, traced, and tested.
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Systems

L

Modern systems are increasingly complex with several
subsystems, supporting & enabling systems, and extensive
infrastructure dependencies which result in interactive and
emergent behaviors. As unprecedented system-of-systems, they
are inherently susceptible to a wide range of malicious and non-
malicious events which can result in unexpected disruptions and
unpredictable security related behaviors. This systems security
gap arises from a lack of rigorously applied security analysis and
engineering [1]. Thus, special attention is required to engineer
secure and resilient systems built to operate in highly contested
operational  environments  fraught with  uncertainty,
unpredictability, and attacks from intelligent adversaries, as well
as, abuse and misuse by humans (e.g., owners, operators,
maintainers, etc.) [2], [3], [4].

To address this critical systems security gap, the National
Institute of Standards and Technology (NIST), National
Security Agency (NSA), MITRE, and several industry leaders
from around the world collaborated on a five-year effort to
produce a comprehensive Systems Security Engineering (SSE)
approach [5]. In November of 2016, the final version of NIST
Special ~ Publication (SP) 800-160, Systems Security
Engineering, was released with the goal of formalizing and
institutionalizing engineering-driven actions to develop more
defensible and resilient systems [1]. This work is part of an
ongoing research activity to raise awareness regarding the
revitalization of SSE with an emphasis on more fully
understanding its tailored application to assist developers,
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owners, and operators in understanding and achieving a rigorous
SSE approach [6], [7].

This paper provides a straightforward introduction to SSE
while highlighting essential definitions and concepts.
Sections III and IV describe the NIST SP 800-160 Appendix F
security developmental strategies and maps them to 18
architectural and design principles. In addition, these mappings
are examined for implementation considerations and tradeoffs.
This examination is useful for meeting system security needs by
mapping conceptual strategies to more concrete security
principles that can be effectively implemented and tested for a
System of Interest (Sol). This work emphasizes the “design-for”
purpose of the security principles, provides security
requirements traceability, and points towards evidences of
trustworthiness (e.g., design artifacts, analyses, test results).

IL.

This section covers key SSE definitions and concepts to
provide context for the reader seeking to further understand the
specialty engineering discipline of SSE. Moreover, this
background is essential for understanding the application of
systems security design and architectural principles detailed in
Sections III and IV.

A. SSE Definitions

While there is renewed interest in SSE within the United
States Department of Defense (U.S. DoD) and broader industry,
there is little discussion of formal definitions [2], [8]. In 1989,
the U.S. DoD offered the first formal definition of SSE in
Military Standard 1785 (now MIL-HDBK 1785) [9]:

SYSTEMS SECURITY ENGINEERING (SSE)

An element of system engineering that applies scientific
and engineering principles to identify security
vulnerabilities and minimize or contain risks associated
with these vulnerabilities. It uses mathematical, physical,
and related scientific disciplines, and the principles and
methods of engineering design and analysis to specify,
predict, and evaluate the vulnerability of the system to
security threats.

While this definition describes today’s technical security
concerns well, MIL-HDBK 1785 also includes a SSE
Management definition, which reflects elements of the U.S.
DoD’s modern view of the technical and technical management
aspects of systems engineering [9]:



An element of program management that ensures system
security tasks are completed. These tasks include
developing security requirements and objectives; planning,
organizing, identifying, and controlling the efforts that help
achieve maximum security and survivability of the system
during its life cycle; and interfacing with other program
elements to make sure security functions are effectively
integrated into the total system engineering effort.

B. Foundational SSE Concepts

1) SSE Informed System Development

Figure 1 illustrates an SSE approach where those charged
with executing SSE responsibilities are required to
communicate up to key Stakeholders, down to security specialty
areas, and across various Subject Matter Expert (SME) areas.
While domain-specific security specialists must be able to
identify and analyze vulnerabilities, a systems-oriented view of
security requires a holistic view of the Sol. Thus, those
responsible for executing SSE responsibilities need to be astute
enough to understand the technical aspects of the broad
continuum of security, inclusive of its physical, machine,
technical, “cyber”, and operational aspects, while
simultaneously wielding enough programmatic wherewithal to
intelligibly advise on the planning, development, and fielding of
complex systems. An integrated SSE approach ensures sound
security methodologies, processes, and best practices are
considered throughout the entire system life cycle to meet the
Stakeholders’ security needs and objectives.

2) A Standardized Engineering Approach

Standardized  engineering  approaches, such as
ISO/IEC/IEEE 15288, facilitate shared understanding amongst
multiple Stakeholders, Engineers, and various other specialty
disciplines [10]. For example, ISO/IEC/IEEE 15288 defines six
common life cycle stages (Concept, Development, Production,
Utilization, Support, and Retirement), which promote the
consistent development of unprecedented systems with defined
entry/exit criteria, expected artifacts, and well-understood
decision points [11]. Furthermore, this vetted standard has 30
defined engineering processes which are used to provide rigor
throughout the six engineering life cycle stages. With respect to
system security, the use of a standardized approach aims to
reduce shortcomings in the allocation of responsibilities
between Stakeholders, Systems Security Engineers, and
domain-level security SMEs though the utilization of well-
defined life cycle stages and associated processes [8], [12].

3) Applicable to Multiple System Types

SSE personnel must also be equipped to address system-
level security considerations in a number of common application
domains. Moreover, SSE is increasingly becoming a necessary
undertaking across many system types [13]. Thus, an SSE
approach which is not industry-specific nor focused exclusively
on “cybersecurity” is required. This means a system agnostic
SSE approach which is capable of leveraging established
technical and non-technical processes to achieve cost-effective
security solutions across various system types regardless of their
intended purpose(s), application domain(s), technological
implementation(s), end user(s), or operational environment(s).
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Fig. 1. Critical SSE roles and relationships. Derived from [14].

II1.

Although there are many security best practices available in
the literature, there is relatively little recent work which focuses
on unifying security strategies [15]; thus, we would like to thank
Paul Clark, Cynthia Irvine, and Thuy Nguyen for their research
contributions which form the basis of the NIST SP 800-160
Appendix F. Please note that much of the Section III and IV
discussion is largely derived from Appendix F with
supplemental commentary to emphasize the system-level
applicability of the security strategies and principles to a
multitude of system types and personnel. Appendix F describes
three overarching systems security development strategies [1]:

SECURE SYSTEM DEVELOPMENT STRATEGIES

1. Access Mediation (The Reference Monitor Concept)
2.Defense in Depth
3.Isolation — Physical and Logical

These NIST-provided strategies offer an excellent starting point
for framing the discussion of understanding and applying
systems security design principles.

A. Access Mediation (The Reference Monitor Concept)

The access mediation strategy provides a conceptual model
of the necessary access controls (or rules) that must be achieved
to enforce security policies. This strategy is critically important
because it constitutes the core fundamental concept in security
design [16]. Thus, access mediation builds the foundation to
successfully execute SSE activities and tasks, including detailed
security analyses of the Sol’s design, architecture, and
implementation (for further details please see [17]).

Ideally, realizations of the access mediation concept possess
three properties [18]: (1) it is tamper-proof; (2) it is always
invoked; and (3) it can be subjected to analysis and testing to
assure correctness (i.e., the reference validation mechanism).
This means that any mechanism (physical or logical) claiming



to perform access mediation only does what it is supposed to do
and can never be bypassed, coerced, manipulated, or fooled.
These properties also assume that the security policy can be
correctly defined by humans and accurately transformed into a
representation understood by the mechanism.

While fully acknowledging that these properties are not
achievable in real-world systems, the intent of access mediation
is primarily to help developers think critically about security
mechanisms; and thus, avoid ad hoc security approaches.
Ultimately, the technical constrains and practical limitations of
realized security solutions translate into risks for the Sol. Since
it is critical to manage these risks, those charged with SSE roles
and responsibilities need to be able identify, understand, and
mitigate system-level issues in a systematic way.

B. Defense in Depth

Perhaps the most plainly understood systems security
strategy, defense in depth describes security approaches (i.e.,
conceptual and physical architectures) which create a series of
barriers to prevent, delay, or deter an attack by an adversary.
Typically, defense is depth is achieved through the application
of multiple security mechanisms. While the application of
multiple security components may increase system assurance,
there is no formalized theoretical basis to assume that defense in
depth alone achieves a level of trustworthiness greater than that
of the individual security components. Additionally, it is
important to note that implementing a defense in depth strategy
is not a substitute for or equivalent to a choosing a sound security
architecture or system design that leverages a balanced
application of security concepts and design principles [19].

C. Isolation

The isolation security strategy pertains to the creation of
separated processing environments; they can be logical,
physical, or a combination thereof. Logical isolation requires the
use of underlying trustworthy mechanisms to minimize resource
sharing. For example, domain separation is in commonly used
in many workplaces separating user accounts from the
underlying operating system. As another example, isolated
computer environments can be easily created through
virtualization. Despite increases in the use of virtualized
environments, research continues to demonstrate that isolation
for processing environments can be extremely difficult to
achieve [20].

More concretely, physical isolation typically involves
separation of components, systems, and networks by hosting
them on discrete hardware components. Under the broader
systems security purview, it is also important to note that
isolation may include the use of specialized facilities and/or
operational procedures to control personnel actions and access.
Thus, in many operational environments, isolation objectives are
achieved through a combination of logical and physical
mechanisms. For example, in one of the most impressive cyber-
physical attacks to date, Stuxnet, both physical and logical
isolation boundaries were violated [21]. Thus, it is critically
important for systems security engineers to be cognizant of
co-dependencies between logical and physical mechanisms.

Iv.

Based on decades of work, a number of security best
practices, principles, and patterns have been proposed. For
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example, the National Security Agency (NSA) specifies nine
security “first principles” in their educational criteria [22]. As
another example, dozens of security patterns are captured in
[23]. In a third example, the U.S. DoD’s System Survivability
Key Performance Parameter suggests three pillars and ten
attributes to achieve cybersecurity and survivability [24]. While
none of these approaches are inherently deficient, the NIST SP
800-160 uniquely captures the essence of these works in
18 well-defined systems security principles shown in Table 1.

A. Mapping Introduction

Before addressing the security principles in detail, it is
helpful to first consider our intentions — to provide system
architects, designers and developers concrete engineering
principles that can be designed-for, built-in, and tested to meet
stakeholders’ security needs and objectives. Shown in Figure 2,
our mapping illustrates the various relationships between the
security strategies and principles [25]. This mapping allows
users to more easily understand the complexities associated with
implementing the security principles [26]. For example, by
reading down each column, the developer can ascertain which
design principles inform the desired security strategy or
principle. Reading across each row, the developer can see which
security principles contribute to related security strategies and
principles. Most importantly, examining each row, Figure 2
brings insight into the tradeoffs associated with the application
of each security principle — there are inherent conflicts and
contradictions that must be considered (knowingly or
unknowingly) when applying the security principles.

These mappings enable reasoning about, and justification of,
security design decisions which point towards evidences of
sound SSE strategy selection and implementation. For example,
stakeholders, auditors, and security specialists can consider
which security principles should be chosen, their
implementation, and security assessments. Lastly, these
mappings promote requirements traceability, support decisions
of trustworthiness, and provide justification of limited resources.
In the following subsections, each of the 18 design principles is
systematically discussed one by one.

1) Clear Abstractions

This principle promotes readily understandable system-level
abstractions such as subsystem elements, orderly data objects,
and cohesive logical groupings which provide the engineer
insight into the Sol’s design. This in turn helps to achieve shared
understanding amongst multiple stakeholders and facilitate
more effective design reviews. Well defined abstractions also
assist security engineers and decision makers in conducting
security analysis and testing activities. Please note that while
concepts such as “clarity” are inherently subjective, modeling
languages such as SysML and UML provide rapidly maturing
and standardized approaches for defining and communicating
abstractions [27].

Clear abstractions support several security strategies and
principles, but are particularly important for access mediation
and isolation strategies. This due to their importance in defining
relationships and behaviors between various subsystem
elements, functions, users, dependencies, and data exchanges
(i.e., all the Sol’s important objects and their associations). For
example, information dependencies must be detailed before
access control rules can be appropriately defined. On a related



note, clear abstractions also imply that such dependencies can
be fully known across the Sol’s users, subsystems, components,
supporting/enabling systems, and various forms of data.

2) Least Common Mechanism

Longstanding design guidance such as “high cohesion” &
“low coupling” are implicit in this design principle as like
functionality is singularly consolidated, which reduces the
security related development and analysis effort [28]. In general,
a single instantiation of a mechanism (security or otherwise)
allows for more efficient use of limited resources throughout the
system lifecycle. Ideally, this principle also contributes to the
development of more effective security mechanisms, since the
design and engineering effort can be more focused.

Both access mediation and isolation strategies are implicit in
this principle, while also reducing system complexity.
Implementing a single mechanism can significantly reduce the
complexity of access control rules, and thus, supports both
reduced lifecycle costs as there are not multiple instantiations to
document and modify.

3) Modularity and Layering
Modularity and layering are fundamental principles across
both systems engineering and software disciplines [8], [28]; they
serve to increase understandability by logically structuring and
delineating dependencies between functional entities and data
structures. The essential role of this design-focused principle is

reflected in its direct support to several security strategies and
principles to include access mediation, isolation, minimal
complexity, hierarchical decomposition, and separation of
applications into specific domains.

Commonly, this principle is used to facilitate the realization
of security policy by restricting privileges of users, functions,
and entities (i.e., access control). It is also important to recognize
that resiliency is often achieved through modularity and layering
which limits the damage inflicted by an attack or failure. For
example, a secure system architecture minimizes dependencies
and interactions such that when a component is compromised, it
does not render other mission essential functionality inoperable.
Lastly, it is worth stating that “layering” is not the same as
“defense in depth” — the former is focused on the efficient design
of a system, while the latter is focused on redundant means for
protecting a system.

4) Ordered Dependencies (Partially)

Although not entirely necessary, the term “partially” is
typically included in the principle title to imply that not all layers
(and modules) can be strictly ordered. More simply, this
principle suggests that higher layers should depend on lower
layers and multi-layer circular dependencies should be avoided.

Logically structuring and minimizing dependencies
contributes to  isolation between layers, increases
understandability of the design, reduces system complexity in
the implementation, and facilitates test and analysis. A system

TABLEI
DESIGN PRINCIPLE DEFINITIONS DERIVED FROM NIST SP 800-160, APPENDIX F [5].

Principle Name

Definition (note, descriptions are slightly modified from NIST SP 800-160 to emphasize system-level applicability)

Clear Abstractions

A system should have simple, well-defined interfaces and functions to provide a consistent and intuitive view of the Sol’s data,
data elements, and how the data is utilized and managed.

Least Common
Mechanism

If multiple components in a system require the same functionality (e.g., a necessary security feature), the desired functionality
should be built into a single mechanism (physical or logical) which can be used by all components who require it.

Modularity and Layering

Modularity organizes and isolates functionality and related data flows into well-defined logical groupings (conceptual elements
or “objects”), while layering orders and defines relationships between entities and their associated data flows.

Ordered Dependencies
(Partially)*

Ordered dependencies refers to the logical arrangement of layers (and modules) such that linear (or hierarchical) functional calls,
synchronization, and other dependencies are achieved, and circular dependencies are minimized.

Efficiently Mediated
Access

Policy enforcement mechanisms (physical and logical) should utilize the least common mechanism available while satisfying
stakeholder requirements within expressed constraints.

Minimized Sharing

No resources should be shared between system components (e.g., elements, processes, etc.) unless it is absolutely necessary to do
S0.

Reduced Complexity

The system design should be as simple and small as possible.

Secure Evolvability

A system should be developed to facilitate secure maintenance when changes to its functionality, architecture, structure, interfaces,
interconnections, or its functionality configuration occur.

Trusted Components

A component must be trustworthy to at least a level commensurate with the security dependencies it supports.

Hierarchical Trust

Building upon the principle of trusted components, hierarchical trust provides the basis for trustworthiness reasoning when
composing a system from a variety of components with differing trustworthiness.

Commensurate
Protection*

The degree of protection provided to a component must be commensurate with its trustworthiness — as the trust placed in a
component increases, the protection against unauthorized modification of the component should increase to the same degree.

Hierarchical Protection

A component need not be protected from more trustworthy components.

Minimize Trusted
Components*

A system should not have extraneous trusted elements, components, data, or functions.

Least Privilege

Each system element (e.g., enabling systems, components, data elements, users, etc.) should be allocated sufficient privileges to
accomplish its specified function, but no more.

Multi-Factor
Permissions*

Requiring multiple authorizing entities or operators to provide consent before a highly critical operation or access to highly
sensitive data, information, or resources is granted.

Self-Reliance*

Systems should minimize their reliance on other systems, elements, or components for their own trustworthiness.

Secure Composition*

The composition of various components that enforce the same security policy should result in a system that enforces that policy
at least as well as the individual components do.

Trusted Communication

Each communication channel (i.e., an interface, link, or network) must be trustworthy to a level commensurate with the security
dependencies it supports.

* denotes that the principle’s name has been slightly modified to improve understandability and applicability for a broad developmental audience.
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Fig. 2. Mapping of System Security Strategies to Design Principles.

with partially ordered dependencies is also less likely to
negatively impact associated functions and elements, thus
contributing to survivability. Additionally, partially ordered
dependencies helps to preserve trustworthiness by avoiding
linkages between components with lower and higher trust levels.

5) Efficiently Mediating Access
Efficiently and effectively mediating access is typically
achieved through an operating system configured to enforce a
policy on the use of system resources. For example, preventing
users from accessing privileged or non-essential system
functionality serves to protect the user(s) and Sol. Moreover,
due to the principles of least common mechanism much of the
desired protection capability is resident in a single mechanism
which can contribute to performance bottlenecks. Thus, the
design engineer must carefully consider the means for mediating
access (e.g., technological solutions, process constraints,
personnel restrictions, etc.) as to not negatively impact system
performance or the desired protection capability.
This principle is directly related to the realization of the access
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mediation and isolation strategies to include people, processes,
and technologies. Additionally, it is related to a number of other
security principles such as minimizing sharing, trust, and
hierarchical structures. It is also worth noting that while
verification and validation should be accounted for in the
development of sound security principles, often these
requirements are not sufficiently addressed; thus, independently
addressing the application of this principle is important because
analytically evidences are used to substantiate claims of
trustworthiness which support the achievement of security
objectives, as well as, determinations of risk(s).

6) Minimized Sharing

In contrast to modern trends of sharing system resources and
access to information, this principle stresses limited sharing of
system resources (e.g., hardware, software, data, people, etc.).
In particular, the sharing of data outside the Sol merits close
scrutiny to avoid unauthorized access, disclosure, use,
tampering, or modification. Internal to the system, developers
must be mindful as to not hinder mission essential functions
during diligent application.



This principle directly supports the access mediation and
isolation strategies by reducing the number of interactions
between users and system elements. Curtailing the sharing of
resources effectively creates boundaries within the Sol to protect
critical functions, simplify design and implementation
(minimizing the attack surface), and facilitates defense in depth.
While limiting shared resources may be advantageous for
security reasons, this principle may be viewed as being in
conflict with other security strategies and principles such as least
common mechanism, so the benefits of each must be fully
considered.

7) Reduced Complexity

There are several potential benefits to simpler systems
including: increased understandability, ease of analysis, less
prone to errors, fewer vulnerabilities, and lower costs.
Moreover, these benefits can be realized across the entire
development lifecycle (i.e., from concept to implementation,
operation, sustainment, and retirement) which enables the
desired security policy to be more effectively achieved.

Reduced complexity is particularly important for assessing
access mediation mechanisms to demonstrate that the desired
protection capability is achieved. Clarity of design enables the
identification of potential vulnerabilities during testing (i.e.,
verification and validation) and their associated mitigations.
Because of the additional insight gained through simplicity, this
principle strongly contributes to nearly every design principle.
Additionally, simpler designs help facilitate isolation through
clarity of design and minimizing unnecessary interdependencies
which can also contribute to system survivability (note, taken
too far simplicity can serve to eliminate isolation mechanisms).

8) Secure Evolvabilty

This principle addresses both planned and unplanned
updates, modifications, reconfigurability, and agility. Although
primarily executed during operations and maintenance phases of
the lifecycle, the system must be carefully designed and
engineered to facilitate secure modifications. For example, if
change is “planned-in” from the conceptual phase, secure
evolvability can be “designed-in” to produce a more robust
system that is built to be upgraded in a secure manner rather than
ad hoc patching and after-the-fact solutions which attempt to
adapt to the changing threat and operational environment [29].

Acknowledging that complex systems often have long
lifecycles and face a dynamic set of constantly evolving threats,
this principle is key to improving system security and
survivability. More specifically, it is critical for facilitating
secure software and hardware upgrades, modifications, and
patches during operations and sustainment. Thus, this principle
supports nearly all security strategies and principles throughout
the Sol’s lifecycle. Focusing on secure evolvability early in the
lifecycle also has the potential to drive down engineering costs
and facilitate less complex mitigations to future threats;
however, it can negatively impact access mediations because of
poor design and implementation choices.

9) Trusted Components (and Functionality)

This principle highlights that the trust chain is only as strong
as its weakest link; thus, each component’s trustworthiness must
be commensurate with the broader Sol’s desired trustworthiness
for a given security functionality. While “trust” is often applied
to low-level physical components, this security principle is
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equally applicable to subsystems, mission critical functionality,
operators and support personnel, logistical activities, and
communication channels.

This principle is foundational for the development of assured
systems and operations as it facilitates reasoning about the
evidences for decisions of trustworthiness, and more specifically
it highlights where the Sol’s trust chain is being limited by less
trustworthy link(s). More concretely, trusted components (i.e.,
their functionality) enable the construction of trustworthy secure
systems such that trustworthiness is not inadvertently
diminished or misplaced as described in the hierarchical trust
principle and supported by other structural-oriented principles.

10) Hierarchical Trust

The principle of hierarchical trust builds on the principle of
trusted components and stresses the need to look vertically along
trust dependency chains to ensure lower trust components (and
functions) do not diminish the system’s overall security posture.
More generally, hierarchical trust can be interpreted as the
“architecting” of a trustworthy system from a variety of
components with differing trust levels. For example, if a more
trustworthy component depends upon a less trustworthy
component, this would in effect, put the components in the same
“less trustworthy” equivalence class per the principle of trusted
components. Formally, the system forms a “partial ordering” if
it preserves the principle of trusted components.

Hierarchical trust is essential to achieving (and reasoning
about) the trustworthy security of complex systems composed
of various components (and dependencies) at differing levels of
trustworthiness. In particular, the trust principles (#9 and #10),
along with partial ordering, provide evidences for reasoning
about and justifying trustworthiness decisions. Within the
context of NIST SP 800-160, the hierarchical trust principle
supports the achievement of trustworthiness in the security
strategies and depends upon the correct implementation of
several design principles.

11) Commensurate Protection

Formally named “inverse modification threshold”, this
principle suggests that the degree of protection provided to a
component (or security function) should be commensurate with
its trustworthiness. Thus, the higher a component’s/function’s
value to the trust chain, the more protection it should warrant.

This principle expressly builds on the principles of trusted
components and hierarchical trust, and is supported by several
other security principles. This principle specifically contributes
to access mediation and defense in depth strategies, and
indirectly supports many principles as well. By deliberately
focusing on the Sol’s most critical components and functions,
this principle ensures that adequate trustworthiness is designed
into the system with supporting evidences.

12) Hierarchical Protection

While relatively straightforward, this principle is important
for properly scoping and bounding the security engineering
effort. Approaches such as the U.S. DoD’s criticality analysis
can be used to help focus limited security resources [12]; for
example, the most critical components (i.e., those which execute
mission essential functions) in a combat weapon system must be
protected from other less trustworthy components. It is also
worth noting that operators and other personnel should also be
considered in the application of this principle.



This principle supports all three strategies by protecting the
Sol from untrusted components, functions, data, and users with
lower trustworthiness and reserving higher level privileges for
more trusted entities. Regarding security design decisions, this
principle also guides the application of architectural and
component level principles to ensure security resources are not
wasted on protections against higher trust level components.

13) Minimize Trusted Components

This principle suggests that the Sol should contain as few
trustworthy components (or systems elements) as possible.
Somewhat counter-intuitive to security practitioners, when
implemented properly this principle discourages extra security
components, features, and technologies (which are also likely to
introduce additional vulnerabilities).

Minimizing the number of trusted components simplifies the
testing associated with access mediation and other protection
principles such as hierarchical trust. Much like hierarchical
protection this principle also helps to minimize costs and
complexity of the desired protection capability. Arguably, the
resulting simplicity also enhances survivability.

14) Least Privilege

While “least privilege” is typically understood as the
granting and revoking of user privileges during a system’s
operation, it is an essential design principle for system security
development in terms of the Sol’s internal structure and
organization, as well as, the providing capability for the
assignment of user privileges. By allocating only the minimum
privileges necessary to each component, when one is misused,
damaged or compromised the impact to the system will be
limited by the scope of the privileges granted. Additionally, it is
important to note that this principle has widespread applicability
for securing both internal and external interactions (e.g., system
elements, supporting/enabling systems, data processing, data
storage).

Thus, the principle of least privilege is pervasive and directly
supports access mediation, often with the outcome of logical or
physical isolation. This helps to minimize the impact of potential
failures, corruption, misuse, and malicious activities. Least
privilege also serves to reduce interdependencies, which
simplifies component design, implementation, and analysis.
Additionally, applying the principle of least privilege can
improve survivability as an attacker’s movements are limited
when they are denied privilege escalation, a key tactic employed
by advanced persistent threats.

15) Proportional Permissions

Somewhat akin to two-person authentication—a
well-established security best practice in multiple domains such
as financial [19] and flight safety [30]—the use of multiple
individuals, organizations, or system entities to grant access
decreases the likelihood of abuse and provides additional
protection that no single accident, deception, or breach of trust
is sufficient to enable an unrecoverable action. Note, although
typically thought about as parallel authorization, proportional
permissions can be serial in nature across two or more entities.

This principle directly contributes to the access mediation
strategy and defense in depth, while also enhancing
survivability by protecting mission critical information,
components, and processes. However, it is also important to
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note that relying on multiple valid authentications can also
negatively impact availability and/or survivability. Lastly, the
predicate permissions principle adds complexity into the system
design, so its usage needs to be considered carefully within the
engineering trade space.

16) Self-Reliance

In addition to minimizing the Sol’s reliance on other systems
for its own trustworthiness, this principle should also be applied
to subsystem elements, objects, and functions which require
high levels of trustworthiness. Application of this principle
minimizes the number of  dependencies  (e.g.,
supporting/enabling systems, data feeds, and personnel
interactions). Perhaps, the importance of this principle is best
illustrated with a counterexample where system developers
often assume trustworthiness of input data, which in many cases
is unmerited and ultimately degrades the Sol’s trustworthiness.

Primarily, this principle serves to isolate the Sol which
reduces its attack surface and eliminates the system’s
susceptibility to  vulnerabilities inherent in external
links/systems, especially those it cannot control. If the principle
is applied within the system’s architecture, it can also serve to
isolate mission critical functions and components. Self-reliance
can also help to reduce design and implementation complexity,
increase testability and improve system survivability.

17) Secure Composition

Formally titled “Secure Distributed Composition”, this
principle mitigates undesirable emergent security behaviors
resulting from interactions across the Sol’s functions,
components, and supporting/enabling systems. To ensure the
desired system-wide policy enforcement is correct, the Sol must
be thoroughly understood and analyzed; this is particularly
important for distributed system architecture built from
heterogeneous systems.

This principle is related to all of the security strategies and
principles but is strongly dependent upon the hierarchical trust
and hierarchical protection principles to ensure commensurate
implementation of security policy across isolated systems (and
their respective permission levels). Because this principle
includes the composition of distributed features, components,
and system elements, it necessarily touches nearly all design
principles. Application of this principle also exacerbates the
security principles which pertain to communication between
components where the developer must work to identify and
assess emergent behaviors and properties.

18) Trusted Communication

For modern systems of interest, the trusted communication
security principle is critically important, especially when
considering advanced cyber-physical systems built to survive
highly contested cyberspace environments. In contrast to
focusing on the trustworthiness of physical components, this
principle ensures protection is more adequately considered at the
Sol’s most susceptible points — its communication links. This is
because communication channels are generally available to
adversaries for eavesdropping, reverse engineering, and
tampering which can negatively affect data availability and
integrity. Formally, this principle requires that each
communication channel be trustworthy to a level commensurate
with the security functions it supports.



This principle is similar and related to a number of other
design principles and is often achieved through conventional
protection mechanisms such as encryption, which also
contributes to access mediation and isolation security strategies.
In particular, this principle ensures weaknesses are not
introduced via susceptible communication channels and
ensuring communication channels have the same level of
protection as the components they support.

V. CONCLUSIONS

This work examines the NIST SP 800-160 systems security
strategies and design principles, and more specifically offers a
mapping of conceptual strategies to concrete security principles
that can be more effectively designed-for, built-in, and tested.
This work is part of a series of works which aims to assist
developers, owners, and operators in understanding and
achieving a rigorous SSE approach. Future work includes
studying the efficient application of these principles and their
applicability to cyber resiliency, as well as identifying
appropriate technical performance measurements and criteria.
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