
Examination of Security Design Principles

from NIST SP 800-160

Logan O. Mailloux
*
, Paul M. Beach, and Martin “Trae” Span

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio
*
Corresponding Author: Logan.Mailloux@afit.edu

Abstract—This paper explores the engineering of secure

and resilient systems through a detailed examination of

security strategies and principles as presented in

Appendix F of the recently published National Institute of

Standards and Technology Special Publication (NIST SP)

800-160. First, a brief introduction to systems security

engineering is provided with recommended readings for

those who desire to become more familiar with the specialty

domain. Next, the NIST SP 800-160 Appendix F systems

security strategies and principles are described, as well as,

examined for implementation considerations. This

examination and mapping provides a linkage of abstract

security strategies to concrete security principles which can

be more directly implemented, traced, and tested.

Keywords—Systems Security Engineering; Systems

Engineering; Security Principles; Design Principles

I. INTRODUCTION

Modern systems are increasingly complex with several

subsystems, supporting & enabling systems, and extensive

infrastructure dependencies which result in interactive and

emergent behaviors. As unprecedented system-of-systems, they

are inherently susceptible to a wide range of malicious and non-

malicious events which can result in unexpected disruptions and

unpredictable security related behaviors. This systems security

gap arises from a lack of rigorously applied security analysis and

engineering [1]. Thus, special attention is required to engineer

secure and resilient systems built to operate in highly contested

operational environments fraught with uncertainty,

unpredictability, and attacks from intelligent adversaries, as well

as, abuse and misuse by humans (e.g., owners, operators,

maintainers, etc.) [2], [3], [4].

To address this critical systems security gap, the National

Institute of Standards and Technology (NIST), National

Security Agency (NSA), MITRE, and several industry leaders

from around the world collaborated on a five-year effort to

produce a comprehensive Systems Security Engineering (SSE)

approach [5]. In November of 2016, the final version of NIST

Special Publication (SP) 800-160, Systems Security

Engineering, was released with the goal of formalizing and

institutionalizing engineering-driven actions to develop more

defensible and resilient systems [1]. This work is part of an

ongoing research activity to raise awareness regarding the

revitalization of SSE with an emphasis on more fully

understanding its tailored application to assist developers,

owners, and operators in understanding and achieving a rigorous

SSE approach [6], [7].

This paper provides a straightforward introduction to SSE

while highlighting essential definitions and concepts.

Sections III and IV describe the NIST SP 800-160 Appendix F

security developmental strategies and maps them to 18

architectural and design principles. In addition, these mappings

are examined for implementation considerations and tradeoffs.

This examination is useful for meeting system security needs by

mapping conceptual strategies to more concrete security

principles that can be effectively implemented and tested for a

System of Interest (SoI). This work emphasizes the “design-for”

purpose of the security principles, provides security

requirements traceability, and points towards evidences of

trustworthiness (e.g., design artifacts, analyses, test results).

II. SYSTEMS SECURITY ENGINEERING (SSE)

This section covers key SSE definitions and concepts to

provide context for the reader seeking to further understand the

specialty engineering discipline of SSE. Moreover, this

background is essential for understanding the application of

systems security design and architectural principles detailed in

Sections III and IV.

A. SSE Definitions

While there is renewed interest in SSE within the United

States Department of Defense (U.S. DoD) and broader industry,

there is little discussion of formal definitions [2], [8]. In 1989,

the U.S. DoD offered the first formal definition of SSE in

Military Standard 1785 (now MIL-HDBK 1785) [9]:

An element of system engineering that applies scientific

and engineering principles to identify security

vulnerabilities and minimize or contain risks associated

with these vulnerabilities. It uses mathematical, physical,

and related scientific disciplines, and the principles and

methods of engineering design and analysis to specify,

predict, and evaluate the vulnerability of the system to

security threats.

While this definition describes today’s technical security

concerns well, MIL-HDBK 1785 also includes a SSE

Management definition, which reflects elements of the U.S.

DoD’s modern view of the technical and technical management

aspects of systems engineering [9]:

978-1-5386-3664-0/18/$31.00 ©2018 IEEE 488

An element of program management that ensures system

security tasks are completed. These tasks include

developing security requirements and objectives; planning,

organizing, identifying, and controlling the efforts that help

achieve maximum security and survivability of the system

during its life cycle; and interfacing with other program

elements to make sure security functions are effectively

integrated into the total system engineering effort.

B. Foundational SSE Concepts

1) SSE Informed System Development

 Figure 1 illustrates an SSE approach where those charged

with executing SSE responsibilities are required to

communicate up to key Stakeholders, down to security specialty

areas, and across various Subject Matter Expert (SME) areas.

While domain-specific security specialists must be able to

identify and analyze vulnerabilities, a systems-oriented view of

security requires a holistic view of the SoI. Thus, those

responsible for executing SSE responsibilities need to be astute

enough to understand the technical aspects of the broad

continuum of security, inclusive of its physical, machine,

technical, “cyber”, and operational aspects, while

simultaneously wielding enough programmatic wherewithal to

intelligibly advise on the planning, development, and fielding of

complex systems. An integrated SSE approach ensures sound

security methodologies, processes, and best practices are

considered throughout the entire system life cycle to meet the

Stakeholders’ security needs and objectives.

2) A Standardized Engineering Approach

Standardized engineering approaches, such as

ISO/IEC/IEEE 15288, facilitate shared understanding amongst

multiple Stakeholders, Engineers, and various other specialty

disciplines [10]. For example, ISO/IEC/IEEE 15288 defines six

common life cycle stages (Concept, Development, Production,

Utilization, Support, and Retirement), which promote the

consistent development of unprecedented systems with defined

entry/exit criteria, expected artifacts, and well-understood

decision points [11]. Furthermore, this vetted standard has 30

defined engineering processes which are used to provide rigor

throughout the six engineering life cycle stages. With respect to

system security, the use of a standardized approach aims to

reduce shortcomings in the allocation of responsibilities

between Stakeholders, Systems Security Engineers, and

domain-level security SMEs though the utilization of well-

defined life cycle stages and associated processes [8], [12].

3) Applicable to Multiple System Types

SSE personnel must also be equipped to address system-

level security considerations in a number of common application

domains. Moreover, SSE is increasingly becoming a necessary

undertaking across many system types [13]. Thus, an SSE

approach which is not industry-specific nor focused exclusively

on “cybersecurity” is required. This means a system agnostic

SSE approach which is capable of leveraging established

technical and non-technical processes to achieve cost-effective

security solutions across various system types regardless of their

intended purpose(s), application domain(s), technological

implementation(s), end user(s), or operational environment(s).

Fig. 1. Critical SSE roles and relationships. Derived from [14].

III. SECURE SYSTEM DEVELOPMENT STRATEGIES

 Although there are many security best practices available in

the literature, there is relatively little recent work which focuses

on unifying security strategies [15]; thus, we would like to thank

Paul Clark, Cynthia Irvine, and Thuy Nguyen for their research

contributions which form the basis of the NIST SP 800-160

Appendix F. Please note that much of the Section III and IV

discussion is largely derived from Appendix F with

supplemental commentary to emphasize the system-level

applicability of the security strategies and principles to a

multitude of system types and personnel. Appendix F describes

three overarching systems security development strategies [1]:

1. Access Mediation (The Reference Monitor Concept)

2. Defense in Depth

3. Isolation – Physical and Logical

These NIST-provided strategies offer an excellent starting point

for framing the discussion of understanding and applying

systems security design principles.

A. Access Mediation (The Reference Monitor Concept)

The access mediation strategy provides a conceptual model

of the necessary access controls (or rules) that must be achieved

to enforce security policies. This strategy is critically important

because it constitutes the core fundamental concept in security

design [16]. Thus, access mediation builds the foundation to

successfully execute SSE activities and tasks, including detailed

security analyses of the SoI’s design, architecture, and

implementation (for further details please see [17]).

Ideally, realizations of the access mediation concept possess

three properties [18]: (1) it is tamper-proof; (2) it is always

invoked; and (3) it can be subjected to analysis and testing to

assure correctness (i.e., the reference validation mechanism).

This means that any mechanism (physical or logical) claiming

489

to perform access mediation only does what it is supposed to do

and can never be bypassed, coerced, manipulated, or fooled.

These properties also assume that the security policy can be

correctly defined by humans and accurately transformed into a

representation understood by the mechanism.

 While fully acknowledging that these properties are not

achievable in real-world systems, the intent of access mediation

is primarily to help developers think critically about security

mechanisms; and thus, avoid ad hoc security approaches.

Ultimately, the technical constrains and practical limitations of

realized security solutions translate into risks for the SoI. Since

it is critical to manage these risks, those charged with SSE roles

and responsibilities need to be able identify, understand, and

mitigate system-level issues in a systematic way.

B. Defense in Depth

Perhaps the most plainly understood systems security

strategy, defense in depth describes security approaches (i.e.,

conceptual and physical architectures) which create a series of

barriers to prevent, delay, or deter an attack by an adversary.

Typically, defense is depth is achieved through the application

of multiple security mechanisms. While the application of

multiple security components may increase system assurance,

there is no formalized theoretical basis to assume that defense in

depth alone achieves a level of trustworthiness greater than that

of the individual security components. Additionally, it is

important to note that implementing a defense in depth strategy

is not a substitute for or equivalent to a choosing a sound security

architecture or system design that leverages a balanced

application of security concepts and design principles [19].

C. Isolation

The isolation security strategy pertains to the creation of

separated processing environments; they can be logical,

physical, or a combination thereof. Logical isolation requires the

use of underlying trustworthy mechanisms to minimize resource

sharing. For example, domain separation is in commonly used

in many workplaces separating user accounts from the

underlying operating system. As another example, isolated

computer environments can be easily created through

virtualization. Despite increases in the use of virtualized

environments, research continues to demonstrate that isolation

for processing environments can be extremely difficult to

achieve [20].

More concretely, physical isolation typically involves

separation of components, systems, and networks by hosting

them on discrete hardware components. Under the broader

systems security purview, it is also important to note that

isolation may include the use of specialized facilities and/or

operational procedures to control personnel actions and access.

Thus, in many operational environments, isolation objectives are

achieved through a combination of logical and physical

mechanisms. For example, in one of the most impressive cyber-

physical attacks to date, Stuxnet, both physical and logical

isolation boundaries were violated [21]. Thus, it is critically

important for systems security engineers to be cognizant of

co-dependencies between logical and physical mechanisms.

IV. STRATEGY TO PRINCIPLES MAPPING

Based on decades of work, a number of security best

practices, principles, and patterns have been proposed. For

example, the National Security Agency (NSA) specifies nine

security “first principles” in their educational criteria [22]. As

another example, dozens of security patterns are captured in

[23]. In a third example, the U.S. DoD’s System Survivability

Key Performance Parameter suggests three pillars and ten

attributes to achieve cybersecurity and survivability [24]. While

none of these approaches are inherently deficient, the NIST SP

800-160 uniquely captures the essence of these works in

18 well-defined systems security principles shown in Table I.

A. Mapping Introduction

Before addressing the security principles in detail, it is

helpful to first consider our intentions – to provide system

architects, designers and developers concrete engineering

principles that can be designed-for, built-in, and tested to meet

stakeholders’ security needs and objectives. Shown in Figure 2,

our mapping illustrates the various relationships between the

security strategies and principles [25]. This mapping allows

users to more easily understand the complexities associated with

implementing the security principles [26]. For example, by

reading down each column, the developer can ascertain which

design principles inform the desired security strategy or

principle. Reading across each row, the developer can see which

security principles contribute to related security strategies and

principles. Most importantly, examining each row, Figure 2

brings insight into the tradeoffs associated with the application

of each security principle – there are inherent conflicts and

contradictions that must be considered (knowingly or

unknowingly) when applying the security principles.

These mappings enable reasoning about, and justification of,

security design decisions which point towards evidences of

sound SSE strategy selection and implementation. For example,

stakeholders, auditors, and security specialists can consider

which security principles should be chosen, their

implementation, and security assessments. Lastly, these

mappings promote requirements traceability, support decisions

of trustworthiness, and provide justification of limited resources.

In the following subsections, each of the 18 design principles is

systematically discussed one by one.

1) Clear Abstractions

This principle promotes readily understandable system-level

abstractions such as subsystem elements, orderly data objects,

and cohesive logical groupings which provide the engineer

insight into the SoI’s design. This in turn helps to achieve shared

understanding amongst multiple stakeholders and facilitate

more effective design reviews. Well defined abstractions also

assist security engineers and decision makers in conducting

security analysis and testing activities. Please note that while

concepts such as “clarity” are inherently subjective, modeling

languages such as SysML and UML provide rapidly maturing

and standardized approaches for defining and communicating

abstractions [27].

Clear abstractions support several security strategies and

principles, but are particularly important for access mediation

and isolation strategies. This due to their importance in defining

relationships and behaviors between various subsystem

elements, functions, users, dependencies, and data exchanges

(i.e., all the SoI’s important objects and their associations). For

example, information dependencies must be detailed before

access control rules can be appropriately defined. On a related

490

note, clear abstractions also imply that such dependencies can

be fully known across the SoI’s users, subsystems, components,

supporting/enabling systems, and various forms of data.

2) Least Common Mechanism

Longstanding design guidance such as “high cohesion” &

“low coupling” are implicit in this design principle as like

functionality is singularly consolidated, which reduces the

security related development and analysis effort [28]. In general,

a single instantiation of a mechanism (security or otherwise)

allows for more efficient use of limited resources throughout the

system lifecycle. Ideally, this principle also contributes to the

development of more effective security mechanisms, since the

design and engineering effort can be more focused.

Both access mediation and isolation strategies are implicit in

this principle, while also reducing system complexity.

Implementing a single mechanism can significantly reduce the

complexity of access control rules, and thus, supports both

reduced lifecycle costs as there are not multiple instantiations to

document and modify.

3) Modularity and Layering

Modularity and layering are fundamental principles across

both systems engineering and software disciplines [8], [28]; they

serve to increase understandability by logically structuring and

delineating dependencies between functional entities and data

structures. The essential role of this design-focused principle is

reflected in its direct support to several security strategies and

principles to include access mediation, isolation, minimal

complexity, hierarchical decomposition, and separation of

applications into specific domains.

Commonly, this principle is used to facilitate the realization

of security policy by restricting privileges of users, functions,

and entities (i.e., access control). It is also important to recognize

that resiliency is often achieved through modularity and layering

which limits the damage inflicted by an attack or failure. For

example, a secure system architecture minimizes dependencies

and interactions such that when a component is compromised, it

does not render other mission essential functionality inoperable.

Lastly, it is worth stating that “layering” is not the same as

“defense in depth” – the former is focused on the efficient design

of a system, while the latter is focused on redundant means for

protecting a system.

4) Ordered Dependencies (Partially)

Although not entirely necessary, the term “partially” is

typically included in the principle title to imply that not all layers

(and modules) can be strictly ordered. More simply, this

principle suggests that higher layers should depend on lower

layers and multi-layer circular dependencies should be avoided.

Logically structuring and minimizing dependencies

contributes to isolation between layers, increases

understandability of the design, reduces system complexity in

the implementation, and facilitates test and analysis. A system

TABLE I

DESIGN PRINCIPLE DEFINITIONS DERIVED FROM NIST SP 800-160, APPENDIX F [5].

Principle Name Definition (note, descriptions are slightly modified from NIST SP 800-160 to emphasize system-level applicability)

Clear Abstractions
A system should have simple, well-defined interfaces and functions to provide a consistent and intuitive view of the SoI’s data,

data elements, and how the data is utilized and managed.

Least Common

Mechanism

If multiple components in a system require the same functionality (e.g., a necessary security feature), the desired functionality

should be built into a single mechanism (physical or logical) which can be used by all components who require it.

Modularity and Layering
Modularity organizes and isolates functionality and related data flows into well-defined logical groupings (conceptual elements

or “objects”), while layering orders and defines relationships between entities and their associated data flows.

Ordered Dependencies

(Partially)*

Ordered dependencies refers to the logical arrangement of layers (and modules) such that linear (or hierarchical) functional calls,

synchronization, and other dependencies are achieved, and circular dependencies are minimized.

Efficiently Mediated

Access

Policy enforcement mechanisms (physical and logical) should utilize the least common mechanism available while satisfying

stakeholder requirements within expressed constraints.

Minimized Sharing
No resources should be shared between system components (e.g., elements, processes, etc.) unless it is absolutely necessary to do

so.

Reduced Complexity The system design should be as simple and small as possible.

Secure Evolvability
A system should be developed to facilitate secure maintenance when changes to its functionality, architecture, structure, interfaces,

interconnections, or its functionality configuration occur.

Trusted Components A component must be trustworthy to at least a level commensurate with the security dependencies it supports.

Hierarchical Trust
Building upon the principle of trusted components, hierarchical trust provides the basis for trustworthiness reasoning when

composing a system from a variety of components with differing trustworthiness.

Commensurate

Protection*

The degree of protection provided to a component must be commensurate with its trustworthiness – as the trust placed in a

component increases, the protection against unauthorized modification of the component should increase to the same degree.

Hierarchical Protection A component need not be protected from more trustworthy components.

Minimize Trusted

Components*
A system should not have extraneous trusted elements, components, data, or functions.

Least Privilege
Each system element (e.g., enabling systems, components, data elements, users, etc.) should be allocated sufficient privileges to

accomplish its specified function, but no more.

Multi-Factor

Permissions*

Requiring multiple authorizing entities or operators to provide consent before a highly critical operation or access to highly

sensitive data, information, or resources is granted.

Self-Reliance* Systems should minimize their reliance on other systems, elements, or components for their own trustworthiness.

Secure Composition*
The composition of various components that enforce the same security policy should result in a system that enforces that policy

at least as well as the individual components do.

Trusted Communication
Each communication channel (i.e., an interface, link, or network) must be trustworthy to a level commensurate with the security

dependencies it supports.

* denotes that the principle’s name has been slightly modified to improve understandability and applicability for a broad developmental audience.

491

with partially ordered dependencies is also less likely to

negatively impact associated functions and elements, thus

contributing to survivability. Additionally, partially ordered

dependencies helps to preserve trustworthiness by avoiding

linkages between components with lower and higher trust levels.

5) Efficiently Mediating Access

Efficiently and effectively mediating access is typically

achieved through an operating system configured to enforce a

policy on the use of system resources. For example, preventing

users from accessing privileged or non-essential system

functionality serves to protect the user(s) and SoI. Moreover,

due to the principles of least common mechanism much of the

desired protection capability is resident in a single mechanism

which can contribute to performance bottlenecks. Thus, the

design engineer must carefully consider the means for mediating

access (e.g., technological solutions, process constraints,

personnel restrictions, etc.) as to not negatively impact system

performance or the desired protection capability.

This principle is directly related to the realization of the access

mediation and isolation strategies to include people, processes,

and technologies. Additionally, it is related to a number of other

security principles such as minimizing sharing, trust, and

hierarchical structures. It is also worth noting that while

verification and validation should be accounted for in the

development of sound security principles, often these

requirements are not sufficiently addressed; thus, independently

addressing the application of this principle is important because

analytically evidences are used to substantiate claims of

trustworthiness which support the achievement of security

objectives, as well as, determinations of risk(s).

6) Minimized Sharing

In contrast to modern trends of sharing system resources and

access to information, this principle stresses limited sharing of

system resources (e.g., hardware, software, data, people, etc.).

In particular, the sharing of data outside the SoI merits close

scrutiny to avoid unauthorized access, disclosure, use,

tampering, or modification. Internal to the system, developers

must be mindful as to not hinder mission essential functions

during diligent application.

A
c
c
e
s
s
 C
o
n
tr
o
l

D
e
fe
n
s
e
 i
n
 D
e
p
th

Is
o
la
ti
o
n

C
le
a
r
 A
b
s
tr
a
c
ti
o
n
s

L
e
a
s
t
C
o
m
m
o
n
 M
e
c
h
a
n
is
m

M
o
d
u
la
r
it
y
 a
n
d
 L
a
y
e
r
in
g

P
a
r
ti
a
ll
y
 O
r
d
e
r
e
d
 D
e
p
e
n
d
e
n
c
ie
s

E
ff
ic
ie
n
tl
y
 M
e
d
ia
te
d
 A
c
c
e
s
s

M
in
im
iz
e
d
 S
h
a
r
in
g

R
e
d
u
c
e
d
 C
o
m
p
le
x
it
y

S
e
c
u
r
e
 E
v
o
lv
a
b
il
it
y

T
r
u
s
te
d
 C
o
m
p
o
n
e
n
ts

H
ie
r
a
r
c
h
ic
a
l
T
r
u
s
t

C
o
m
m
e
n
s
u
r
a
te
 P
r
o
te
c
ti
o
n

H
ie
r
a
r
c
h
ic
a
l
P
r
o
te
c
ti
o
n

M
in
im
iz
e
d
 S
e
c
u
r
it
y
 E
le
m
e
n
ts

L
e
a
s
t
P
r
iv
il
e
g
e

P
r
o
p
o
r
ti
o
n
a
l
P
e
r
m
is
s
io
n
s

S
e
lf
‐R
e
li
a
n
t
T
r
u
s
tw
o
r
th
in
e
s
s

S
e
c
u
r
e
 D
is
tr
ib
u
te
d
 C
o
m
p
o
s
it
io
n

T
r
u
s
te
d
 C
o
m
m
u
n
ic
a
ti
o
n
 C
h
a
n
n
e
ls

Access Control ●

Defense in Depth o

Isolation ●

Clear Abstractions ● o ● ● o o ● ● ● ● o o o o ● ● o o o o

Least Common Mechanism ● ● o X o − ● ● o ● o

Modularity and Layering ● ● ● o ● ● o ● ● o o

Partial ly Ordered Dependencies o ● ● ● ●

Efficiently Mediated Access ● ● ● o ● ●

Minimized Sharing ● o ● − ● ● ● o o

Reduced Complexity ● − X o o ● ● ● ● ● ● o ● ● ● ● o ● ● ●

Secure Evolvability − o o o ● ● ● ● ● o o o o o ● o o o o o

Trusted Components ● o o ● ● o ●

Hierarchical Trust ● o ● ● ●

Commensurate Protection ● ● o ● o − o o ● o ●

Hierarchical Protection ● o o o o

Minimized Security Elements o − o ● o ● ● ● o o o

Least Privilege ● ● o ● o o ● ● o ●

Proportional Permissions ● o − ● o

Self‐Reliant Trustworthiness ● o ● ● ● ●

Secure Composition o ● − o − o ● o ● − X ● ● ● ● ● ● ● ●

Trusted Communication ● o ● o o ● o o ● ● ●

Structural Security Principles

S
t
r
u
c
t
u
r
a
l
S
e
c
u
r
it
y
 P
r
in
c
ip
le
s

Security

Strategies
S
e
c
u
r
it
y

S
t
r
a
t
e
g
ie
s

Intentionally left blank

 Legend

"●" indicates a strong posi�ve

 relationship

"o" indicates a weak positive

 relationship

"−" indicates a conflic�ng rela�onship

"X" indicates a relationship that could

 be either positive or negative

Fig. 2. Mapping of System Security Strategies to Design Principles.

492

This principle directly supports the access mediation and

isolation strategies by reducing the number of interactions

between users and system elements. Curtailing the sharing of

resources effectively creates boundaries within the SoI to protect

critical functions, simplify design and implementation

(minimizing the attack surface), and facilitates defense in depth.

While limiting shared resources may be advantageous for

security reasons, this principle may be viewed as being in

conflict with other security strategies and principles such as least

common mechanism, so the benefits of each must be fully

considered.

7) Reduced Complexity

There are several potential benefits to simpler systems

including: increased understandability, ease of analysis, less

prone to errors, fewer vulnerabilities, and lower costs.

Moreover, these benefits can be realized across the entire

development lifecycle (i.e., from concept to implementation,

operation, sustainment, and retirement) which enables the

desired security policy to be more effectively achieved.

Reduced complexity is particularly important for assessing

access mediation mechanisms to demonstrate that the desired

protection capability is achieved. Clarity of design enables the

identification of potential vulnerabilities during testing (i.e.,

verification and validation) and their associated mitigations.

Because of the additional insight gained through simplicity, this

principle strongly contributes to nearly every design principle.

Additionally, simpler designs help facilitate isolation through

clarity of design and minimizing unnecessary interdependencies

which can also contribute to system survivability (note, taken

too far simplicity can serve to eliminate isolation mechanisms).

8) Secure Evolvabilty

This principle addresses both planned and unplanned

updates, modifications, reconfigurability, and agility. Although

primarily executed during operations and maintenance phases of

the lifecycle, the system must be carefully designed and

engineered to facilitate secure modifications. For example, if

change is “planned-in” from the conceptual phase, secure

evolvability can be “designed-in” to produce a more robust

system that is built to be upgraded in a secure manner rather than

ad hoc patching and after-the-fact solutions which attempt to

adapt to the changing threat and operational environment [29].

Acknowledging that complex systems often have long

lifecycles and face a dynamic set of constantly evolving threats,

this principle is key to improving system security and

survivability. More specifically, it is critical for facilitating

secure software and hardware upgrades, modifications, and

patches during operations and sustainment. Thus, this principle

supports nearly all security strategies and principles throughout

the SoI’s lifecycle. Focusing on secure evolvability early in the

lifecycle also has the potential to drive down engineering costs

and facilitate less complex mitigations to future threats;

however, it can negatively impact access mediations because of

poor design and implementation choices.

9) Trusted Components (and Functionality)

This principle highlights that the trust chain is only as strong

as its weakest link; thus, each component’s trustworthiness must

be commensurate with the broader SoI’s desired trustworthiness

for a given security functionality. While “trust” is often applied

to low-level physical components, this security principle is

equally applicable to subsystems, mission critical functionality,

operators and support personnel, logistical activities, and

communication channels.

This principle is foundational for the development of assured

systems and operations as it facilitates reasoning about the

evidences for decisions of trustworthiness, and more specifically

it highlights where the SoI’s trust chain is being limited by less

trustworthy link(s). More concretely, trusted components (i.e.,

their functionality) enable the construction of trustworthy secure

systems such that trustworthiness is not inadvertently

diminished or misplaced as described in the hierarchical trust

principle and supported by other structural-oriented principles.

10) Hierarchical Trust

The principle of hierarchical trust builds on the principle of

trusted components and stresses the need to look vertically along

trust dependency chains to ensure lower trust components (and

functions) do not diminish the system’s overall security posture.

More generally, hierarchical trust can be interpreted as the

“architecting” of a trustworthy system from a variety of

components with differing trust levels. For example, if a more

trustworthy component depends upon a less trustworthy

component, this would in effect, put the components in the same

“less trustworthy” equivalence class per the principle of trusted

components. Formally, the system forms a “partial ordering” if

it preserves the principle of trusted components.

Hierarchical trust is essential to achieving (and reasoning

about) the trustworthy security of complex systems composed

of various components (and dependencies) at differing levels of

trustworthiness. In particular, the trust principles (#9 and #10),

along with partial ordering, provide evidences for reasoning

about and justifying trustworthiness decisions. Within the

context of NIST SP 800-160, the hierarchical trust principle

supports the achievement of trustworthiness in the security

strategies and depends upon the correct implementation of

several design principles.

11) Commensurate Protection

Formally named “inverse modification threshold”, this

principle suggests that the degree of protection provided to a

component (or security function) should be commensurate with

its trustworthiness. Thus, the higher a component’s/function’s

value to the trust chain, the more protection it should warrant.

This principle expressly builds on the principles of trusted

components and hierarchical trust, and is supported by several

other security principles. This principle specifically contributes

to access mediation and defense in depth strategies, and

indirectly supports many principles as well. By deliberately

focusing on the SoI’s most critical components and functions,

this principle ensures that adequate trustworthiness is designed

into the system with supporting evidences.

12) Hierarchical Protection

While relatively straightforward, this principle is important

for properly scoping and bounding the security engineering

effort. Approaches such as the U.S. DoD’s criticality analysis

can be used to help focus limited security resources [12]; for

example, the most critical components (i.e., those which execute

mission essential functions) in a combat weapon system must be

protected from other less trustworthy components. It is also

worth noting that operators and other personnel should also be

considered in the application of this principle.

493

This principle supports all three strategies by protecting the

SoI from untrusted components, functions, data, and users with

lower trustworthiness and reserving higher level privileges for

more trusted entities. Regarding security design decisions, this

principle also guides the application of architectural and

component level principles to ensure security resources are not

wasted on protections against higher trust level components.

13) Minimize Trusted Components

This principle suggests that the SoI should contain as few

trustworthy components (or systems elements) as possible.

Somewhat counter-intuitive to security practitioners, when

implemented properly this principle discourages extra security

components, features, and technologies (which are also likely to

introduce additional vulnerabilities).

Minimizing the number of trusted components simplifies the

testing associated with access mediation and other protection

principles such as hierarchical trust. Much like hierarchical

protection this principle also helps to minimize costs and

complexity of the desired protection capability. Arguably, the

resulting simplicity also enhances survivability.

14) Least Privilege

While “least privilege” is typically understood as the

granting and revoking of user privileges during a system’s

operation, it is an essential design principle for system security

development in terms of the SoI’s internal structure and

organization, as well as, the providing capability for the

assignment of user privileges. By allocating only the minimum

privileges necessary to each component, when one is misused,

damaged or compromised the impact to the system will be

limited by the scope of the privileges granted. Additionally, it is

important to note that this principle has widespread applicability

for securing both internal and external interactions (e.g., system

elements, supporting/enabling systems, data processing, data

storage).

 Thus, the principle of least privilege is pervasive and directly

supports access mediation, often with the outcome of logical or

physical isolation. This helps to minimize the impact of potential

failures, corruption, misuse, and malicious activities. Least

privilege also serves to reduce interdependencies, which

simplifies component design, implementation, and analysis.

Additionally, applying the principle of least privilege can

improve survivability as an attacker’s movements are limited

when they are denied privilege escalation, a key tactic employed

by advanced persistent threats.

15) Proportional Permissions

Somewhat akin to two-person authentication—a

well-established security best practice in multiple domains such

as financial [19] and flight safety [30]—the use of multiple

individuals, organizations, or system entities to grant access

decreases the likelihood of abuse and provides additional

protection that no single accident, deception, or breach of trust

is sufficient to enable an unrecoverable action. Note, although

typically thought about as parallel authorization, proportional

permissions can be serial in nature across two or more entities.

This principle directly contributes to the access mediation

strategy and defense in depth, while also enhancing

survivability by protecting mission critical information,

components, and processes. However, it is also important to

note that relying on multiple valid authentications can also

negatively impact availability and/or survivability. Lastly, the

predicate permissions principle adds complexity into the system

design, so its usage needs to be considered carefully within the

engineering trade space.

16) Self-Reliance

In addition to minimizing the SoI’s reliance on other systems

for its own trustworthiness, this principle should also be applied

to subsystem elements, objects, and functions which require

high levels of trustworthiness. Application of this principle

minimizes the number of dependencies (e.g.,

supporting/enabling systems, data feeds, and personnel

interactions). Perhaps, the importance of this principle is best

illustrated with a counterexample where system developers

often assume trustworthiness of input data, which in many cases

is unmerited and ultimately degrades the SoI’s trustworthiness.

Primarily, this principle serves to isolate the SoI which

reduces its attack surface and eliminates the system’s

susceptibility to vulnerabilities inherent in external

links/systems, especially those it cannot control. If the principle

is applied within the system’s architecture, it can also serve to

isolate mission critical functions and components. Self-reliance

can also help to reduce design and implementation complexity,

increase testability and improve system survivability.

17) Secure Composition

Formally titled “Secure Distributed Composition”, this

principle mitigates undesirable emergent security behaviors

resulting from interactions across the SoI’s functions,

components, and supporting/enabling systems. To ensure the

desired system-wide policy enforcement is correct, the SoI must

be thoroughly understood and analyzed; this is particularly

important for distributed system architecture built from

heterogeneous systems.

This principle is related to all of the security strategies and

principles but is strongly dependent upon the hierarchical trust

and hierarchical protection principles to ensure commensurate

implementation of security policy across isolated systems (and

their respective permission levels). Because this principle

includes the composition of distributed features, components,

and system elements, it necessarily touches nearly all design

principles. Application of this principle also exacerbates the

security principles which pertain to communication between

components where the developer must work to identify and

assess emergent behaviors and properties.

18) Trusted Communication

For modern systems of interest, the trusted communication

security principle is critically important, especially when

considering advanced cyber-physical systems built to survive

highly contested cyberspace environments. In contrast to

focusing on the trustworthiness of physical components, this

principle ensures protection is more adequately considered at the

SoI’s most susceptible points – its communication links. This is

because communication channels are generally available to

adversaries for eavesdropping, reverse engineering, and

tampering which can negatively affect data availability and

integrity. Formally, this principle requires that each

communication channel be trustworthy to a level commensurate

with the security functions it supports.

494

This principle is similar and related to a number of other

design principles and is often achieved through conventional

protection mechanisms such as encryption, which also

contributes to access mediation and isolation security strategies.

In particular, this principle ensures weaknesses are not

introduced via susceptible communication channels and

ensuring communication channels have the same level of

protection as the components they support.

V. CONCLUSIONS

This work examines the NIST SP 800-160 systems security

strategies and design principles, and more specifically offers a

mapping of conceptual strategies to concrete security principles

that can be more effectively designed-for, built-in, and tested.

This work is part of a series of works which aims to assist

developers, owners, and operators in understanding and

achieving a rigorous SSE approach. Future work includes

studying the efficient application of these principles and their

applicability to cyber resiliency, as well as identifying

appropriate technical performance measurements and criteria.

ACKNOWLEDGEMENTS

We would like to thank Michael A. McEvilley for his time,

review, and contribution of this work. This acknowledgement

does not convey or imply MITRE's concurrence with, or

support for, the positions, opinions or viewpoints expressed by

the authors.

DISCLAIMER

The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the U. S. Air

Force, the Department of Defense, or the U.S. Government.

REFERENCES

[1] R. Ross, M. McEvilley and J. C. Oren, "Systems Security

Engineering: Considerations for a Multidisciplinary Approach in the

Engineering of Trustworthy Secure Systems," NIST, 2016.

[2] K. Baldwin, J. Miller, P. Popick and J. Goodnight, "The United States

Department of Defense Revitalization of System Security

Engineering Through Program Protection," in IEEE Systems

Conference, 2012.

[3] D. Snyder, J. D. Powers, E. Bodine-Baron, B. Fox, L. Kendrick and

M. H. Powell, "Improving the Cybersecurity of U.S. Air Force

Military Systems Throughout Their Life Cycles," RAND

Corporation, 2015.

[4] National Defense Industrial Association, "A Path Towards Cyber

Resilient and Secure Systems," NDIA Systems Engineering Division,

2016.

[5] L. O. Mailloux, M. A. McEvilley, S. Khou and J. M. Pecarina,

"Putting the "systems" in security engineering: an examination of

NIST special publication 800-160," IEEE Security & Privacy, vol. 14,

no. 4, pp. 76-80, 2016.

[6] S. Khou, L. O. Mailloux and J. M. Pecarina, "System-agnostic

security domains for understanding and prioritizing systems security

engineering sfforts," IEEE Access, vol. 5, pp. 3465-3474, 2017.

[7] S. Khou, L. O. Mailloux, J. M. Pecarina and M. A. McEvilley, "A

customizable framework for prioritizing systems security engineering

processes, activities, and tasks," IEEE Access, vol 5. pp. 12878-

12894, 2017.

[8] International Council on Systems Engineering, "INCOSE Systems

Engineering Handbook: A Guide for System Life Cycle Processes

and Activities, Version 4," 2014.

[9] United States Department of Defense, "System security engineering

program management requirements," 1989.

[10] ISO/IEC/IEEE, "Systems and software engineering — System life

cycle processes, Third Edition," Geneva, Switzerland, 2015.

[11] ISO/IEC TS, "Systems and software engineering — Life cycle

management — Part 1: Guide for life cycle management, Second

Edition," Geneva, Switzerland, 2016.

[12] Defense Acquisition University, "Defense Acquisition Guidebook,"

05 April 2017. [Online]. Available: https://www.dau.mil. [Accessed

04 May 2017].

[13] S. Dietrich, "Cybersecurity and the Future," IEEE Computer, vol. 50,

no. 04, p. 7, 2017.

[14] L. O. Mailloux, C. Garrison, R. Dove and R. C. Biondo, "Guidance

for Working Group Maintenance of the Systems Engineering Body of

Knowledge (SEBoK) with Systems Security Engineering Example,"

in INCOSE International Symposium, 2015.

[15] C. Irvine and T. D. Nguyen, "Educating the Systems Security

Engineer's Apprentice," IEEE Security & Privacy, vol. 8, no. 4, pp.

58-61, July/August 2010.

[16] C. E. Irvine, D. F. Warren and P. C. Clark, "The NPS CISR graduate

program in infosec: Six years of experience.," in Naval Postgraduate

School Monterey CA Dept of Computer Science, 1997.

[17] M. A. Bishop, The art and science of computer security, Boston, MA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

[18] C. E. Irvine, "The Reference Monitor Concept as a Unifying Principle

in Computer Security Education," Dept of Computer Sci., Naval

Postgraduate School, Monterey CA, 1999.

[19] R. Anderson, Security Engineering, 2nd ed., Indianapolis, Indiana:

Wiley Publishing, Inc, 2008.

[20] A. Van Cleeff, W. Pieters and R. Wieringa, "Security implications of

virtualization: A literature study," in Computational Science and

Engineering, 2009. CSE'09. International Conference on, 2009,

August.

[21] R. Langner, "To kill a centrifuge: a technical analysis of what

stuxnet’s creators tried to achieve," 2013.

[22] National Security Agency, "National Centers of Academic

Excellence," 16 November 2016. [Online]. Available:

https://www.nsa.gov/resources/educators/centers-academic-

excellence/cyber-operations/requirements.shtml. [Accessed 30 May

2017].

[23] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann

and P. Sommerlad, Security patterns: integrating security and systems

engineering, John Wiley & Sons, 2013.

[24] Defense Acquisition University, "System survivability key

performance parameter," 23 May 2017. [Online]. Available:

https://dap.dau.mil. [Accessed 1 June 2017].

[25] D. V. Steward, "The design structure system: A method for managing

the design of complex systems," IEEE transactions on Engineering

Management, vol. 3, pp. 71-74, 1981.

[26] E. Crawley, B. Cameron and D. Selva, System architecture: Strategy

and product development for complex systems, Prentice Hall Press,

2015.

[27] S. Friedenthal, A. Moore and R. Steiner, A practical guide to SysML:

the systems modeling language, Morgan Kaufmann, 2014.

[28] C. Larman, Applying UML and Patterns, Third Edition ed., Pearson

Education, Inc., 2005.

[29] S. R. Goerger, A. M. Madni and O. J. Eslinger, "Engineered resilient

systems: A DoD perspective," in Procedia Computer Science, 2014.

[30] N. Leveson, "A new accident model for engineering safer systems,"

Safety science, vol. 42, no. 4, pp. 237-270, 2004.

495

