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Abstract—This paper explores the engineering of secure 

and resilient systems through a detailed examination of 

security strategies and principles as presented in 

Appendix F of the recently published National Institute of 

Standards and Technology Special Publication (NIST SP) 

800-160. First, a brief introduction to systems security 

engineering is provided with recommended readings for 

those who desire to become more familiar with the specialty 

domain. Next, the NIST SP 800-160 Appendix F systems 

security strategies and principles are described, as well as, 

examined for implementation considerations. This 

examination and mapping provides a linkage of abstract 

security strategies to concrete security principles which can 

be more directly implemented, traced, and tested.  

Keywords—Systems Security Engineering; Systems 

Engineering; Security Principles; Design Principles 

I. INTRODUCTION 

Modern systems are increasingly complex with several 

subsystems, supporting & enabling systems, and extensive 

infrastructure dependencies which result in interactive and 

emergent behaviors. As unprecedented system-of-systems, they 

are inherently susceptible to a wide range of malicious and non-

malicious events which can result in unexpected disruptions and 

unpredictable security related behaviors. This systems security 

gap arises from a lack of rigorously applied security analysis and 

engineering [1]. Thus, special attention is required to engineer 

secure and resilient systems built to operate in highly contested 

operational environments fraught with uncertainty, 

unpredictability, and attacks from intelligent adversaries, as well 

as, abuse and misuse by humans (e.g., owners, operators, 

maintainers, etc.) [2], [3], [4]. 

To address this critical systems security gap, the National 

Institute of Standards and Technology (NIST), National 

Security Agency (NSA), MITRE, and several industry leaders 

from around the world collaborated on a five-year effort to 

produce a comprehensive Systems Security Engineering (SSE) 

approach [5]. In November of 2016, the final version of NIST 

Special Publication (SP) 800-160, Systems Security 

Engineering, was released with the goal of formalizing and 

institutionalizing engineering-driven actions to develop more 

defensible and resilient systems [1]. This work is part of an 

ongoing research activity to raise awareness regarding the 

revitalization of SSE with an emphasis on more fully 

understanding its tailored application to assist developers, 

owners, and operators in understanding and achieving a rigorous 

SSE approach [6], [7]. 

This paper provides a straightforward introduction to SSE 

while highlighting essential definitions and concepts. 

Sections III and IV describe the NIST SP 800-160 Appendix F 

security developmental strategies and maps them to 18 

architectural and design principles. In addition, these mappings 

are examined for implementation considerations and tradeoffs. 

This examination is useful for meeting system security needs by 

mapping conceptual strategies to more concrete security 

principles that can be effectively implemented and tested for a 

System of Interest (SoI). This work emphasizes the “design-for” 

purpose of the security principles, provides security 

requirements traceability, and points towards evidences of 

trustworthiness (e.g., design artifacts, analyses, test results).  

II. SYSTEMS SECURITY ENGINEERING (SSE) 

This section covers key SSE definitions and concepts to 

provide context for the reader seeking to further understand the 

specialty engineering discipline of SSE. Moreover, this 

background is essential for understanding the application of 

systems security design and architectural principles detailed in 

Sections III and IV. 

A. SSE Definitions 

While there is renewed interest in SSE within the United 

States Department of Defense (U.S. DoD) and broader industry, 

there is little discussion of formal definitions [2], [8]. In 1989, 

the U.S. DoD offered the first formal definition of SSE in 

Military Standard 1785 (now MIL-HDBK 1785) [9]: 

An element of system engineering that applies scientific 

and engineering principles to identify security 

vulnerabilities and minimize or contain risks associated 

with these vulnerabilities. It uses mathematical, physical, 

and related scientific disciplines, and the principles and 

methods of engineering design and analysis to specify, 

predict, and evaluate the vulnerability of the system to 

security threats. 

While this definition describes today’s technical security 

concerns well, MIL-HDBK 1785 also includes a SSE 

Management definition, which reflects elements of the U.S. 

DoD’s modern view of the technical and technical management 

aspects of systems engineering [9]: 
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An element of program management that ensures system 

security tasks are completed. These tasks include 

developing security requirements and objectives; planning, 

organizing, identifying, and controlling the efforts that help 

achieve maximum security and survivability of the system 

during its life cycle; and interfacing with other program 

elements to make sure security functions are effectively 

integrated into the total system engineering effort. 

B. Foundational SSE Concepts 

1) SSE Informed System Development 

 Figure 1 illustrates an SSE approach where those charged 

with executing SSE responsibilities are required to 

communicate up to key Stakeholders, down to security specialty 

areas, and across various Subject Matter Expert (SME) areas. 

While domain-specific security specialists must be able to 

identify and analyze vulnerabilities, a systems-oriented view of 

security requires a holistic view of the SoI. Thus, those 

responsible for executing SSE responsibilities need to be astute 

enough to understand the technical aspects of the broad 

continuum of security, inclusive of its physical, machine, 

technical, “cyber”, and operational aspects, while 

simultaneously wielding enough programmatic wherewithal to 

intelligibly advise on the planning, development, and fielding of 

complex systems. An integrated SSE approach ensures sound 

security methodologies, processes, and best practices are 

considered throughout the entire system life cycle to meet the 

Stakeholders’ security needs and objectives. 

2) A Standardized Engineering Approach 

Standardized engineering approaches, such as 

ISO/IEC/IEEE 15288, facilitate shared understanding amongst 

multiple Stakeholders, Engineers, and various other specialty 

disciplines [10]. For example, ISO/IEC/IEEE 15288 defines six 

common life cycle stages (Concept, Development, Production, 

Utilization, Support, and Retirement), which promote the 

consistent development of unprecedented systems with defined 

entry/exit criteria, expected artifacts, and well-understood 

decision points [11]. Furthermore, this vetted standard has 30 

defined engineering processes which are used to provide rigor 

throughout the six engineering life cycle stages. With respect to 

system security, the use of a standardized approach aims to 

reduce shortcomings in the allocation of responsibilities 

between Stakeholders, Systems Security Engineers, and 

domain-level security SMEs though the utilization of well-

defined life cycle stages and associated processes [8], [12]. 

3) Applicable to Multiple System Types 

SSE personnel must also be equipped to address system-

level security considerations in a number of common application 

domains. Moreover, SSE is increasingly becoming a necessary 

undertaking across many system types [13]. Thus, an SSE 

approach which is not industry-specific nor focused exclusively 

on “cybersecurity” is required. This means a system agnostic 

SSE approach which is capable of leveraging established 

technical and non-technical processes to achieve cost-effective 

security solutions across various system types regardless of their 

intended purpose(s), application domain(s), technological 

implementation(s), end user(s), or operational environment(s). 

Fig. 1. Critical SSE roles and relationships. Derived from  [14]. 

III. SECURE SYSTEM DEVELOPMENT STRATEGIES 

 Although there are many security best practices available in 

the literature, there is relatively little recent work which focuses 

on unifying security strategies [15]; thus, we would like to thank 

Paul Clark, Cynthia Irvine, and Thuy Nguyen for their research 

contributions which form the basis of the NIST SP 800-160 

Appendix F. Please note that much of the Section III and IV 

discussion is largely derived from Appendix F with 

supplemental commentary to emphasize the system-level 

applicability of the security strategies and principles to a 

multitude of system types and personnel. Appendix F describes 

three overarching systems security development strategies [1]: 

1. Access Mediation (The Reference Monitor Concept) 

2. Defense in Depth 

3. Isolation – Physical and Logical 

These NIST-provided strategies offer an excellent starting point 

for framing the discussion of understanding and applying 

systems security design principles. 

A. Access Mediation (The Reference Monitor Concept) 

The access mediation strategy provides a conceptual model 

of the necessary access controls (or rules) that must be achieved 

to enforce security policies. This strategy is critically important 

because it constitutes the core fundamental concept in security 

design [16]. Thus, access mediation builds the foundation to 

successfully execute SSE activities and tasks, including detailed 

security analyses of the SoI’s design, architecture, and 

implementation (for further details please see [17]). 

Ideally, realizations of the access mediation concept possess 

three properties  [18]: (1) it is tamper-proof; (2) it is always 

invoked; and (3) it can be subjected to analysis and testing to 

assure correctness (i.e., the reference validation mechanism). 

This means that any mechanism (physical or logical) claiming 
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to perform access mediation only does what it is supposed to do 

and can never be bypassed, coerced, manipulated, or fooled. 

These properties also assume that the security policy can be 

correctly defined by humans and accurately transformed into a 

representation understood by the mechanism. 

 While fully acknowledging that these properties are not 

achievable in real-world systems, the intent of access mediation 

is primarily to help developers think critically about security 

mechanisms; and thus, avoid ad hoc security approaches. 

Ultimately, the technical constrains and practical limitations of 

realized security solutions translate into risks for the SoI. Since 

it is critical to manage these risks, those charged with SSE roles 

and responsibilities need to be able identify, understand, and 

mitigate system-level issues in a systematic way. 

B.  Defense in Depth 

Perhaps the most plainly understood systems security 

strategy, defense in depth describes security approaches (i.e., 

conceptual and physical architectures) which create a series of 

barriers to prevent, delay, or deter an attack by an adversary. 

Typically, defense is depth is achieved through the application 

of multiple security mechanisms. While the application of 

multiple security components may increase system assurance, 

there is no formalized theoretical basis to assume that defense in 

depth alone achieves a level of trustworthiness greater than that 

of the individual security components. Additionally, it is 

important to note that implementing a defense in depth strategy 

is not a substitute for or equivalent to a choosing a sound security 

architecture or system design that leverages a balanced 

application of security concepts and design principles [19]. 

C. Isolation 

The isolation security strategy pertains to the creation of 

separated processing environments; they can be logical, 

physical, or a combination thereof. Logical isolation requires the 

use of underlying trustworthy mechanisms to minimize resource 

sharing. For example, domain separation is in commonly used 

in many workplaces separating user accounts from the 

underlying operating system. As another example, isolated 

computer environments can be easily created through 

virtualization. Despite increases in the use of virtualized 

environments, research continues to demonstrate that isolation 

for processing environments can be extremely difficult to 

achieve [20]. 

More concretely, physical isolation typically involves 

separation of components, systems, and networks by hosting 

them on discrete hardware components. Under the broader 

systems security purview, it is also important to note that 

isolation may include the use of specialized facilities and/or 

operational procedures to control personnel actions and access. 

Thus, in many operational environments, isolation objectives are 

achieved through a combination of logical and physical 

mechanisms. For example, in one of the most impressive cyber-

physical attacks to date, Stuxnet, both physical and logical 

isolation boundaries were violated [21]. Thus, it is critically 

important for systems security engineers to be cognizant of 

co-dependencies between logical and physical mechanisms. 

IV. STRATEGY TO PRINCIPLES MAPPING 

Based on decades of work, a number of security best 

practices, principles, and patterns have been proposed. For 

example, the National Security Agency (NSA) specifies nine 

security “first principles” in their educational criteria [22]. As 

another example, dozens of security patterns are captured in 

[23]. In a third example, the U.S. DoD’s System Survivability 

Key Performance Parameter suggests three pillars and ten 

attributes to achieve cybersecurity and survivability [24]. While 

none of these approaches are inherently deficient, the NIST SP 

800-160 uniquely captures the essence of these works in 

18 well-defined systems security principles shown in Table I. 

A. Mapping Introduction 

Before addressing the security principles in detail, it is 

helpful to first consider our intentions – to provide system 

architects, designers and developers concrete engineering 

principles that can be designed-for, built-in, and tested to meet 

stakeholders’ security needs and objectives. Shown in Figure 2, 

our mapping illustrates the various relationships between the 

security strategies and principles [25]. This mapping allows 

users to more easily understand the complexities associated with 

implementing the security principles [26]. For example, by 

reading down each column, the developer can ascertain which 

design principles inform the desired security strategy or 

principle. Reading across each row, the developer can see which 

security principles contribute to related security strategies and 

principles. Most importantly, examining each row, Figure 2 

brings insight into the tradeoffs associated with the application 

of each security principle – there are inherent conflicts and 

contradictions that must be considered (knowingly or 

unknowingly) when applying the security principles. 

These mappings enable reasoning about, and justification of, 

security design decisions which point towards evidences of 

sound SSE strategy selection and implementation. For example, 

stakeholders, auditors, and security specialists can consider 

which security principles should be chosen, their 

implementation, and security assessments. Lastly, these 

mappings promote requirements traceability, support decisions 

of trustworthiness, and provide justification of limited resources. 

In the following subsections, each of the 18 design principles is 

systematically discussed one by one. 

1) Clear Abstractions 

This principle promotes readily understandable system-level 

abstractions such as subsystem elements, orderly data objects, 

and cohesive logical groupings which provide the engineer 

insight into the SoI’s design. This in turn helps to achieve shared 

understanding amongst multiple stakeholders and facilitate 

more effective design reviews. Well defined abstractions also 

assist security engineers and decision makers in conducting 

security analysis and testing activities. Please note that while 

concepts such as “clarity” are inherently subjective, modeling 

languages such as SysML and UML provide rapidly maturing 

and standardized approaches for defining and communicating 

abstractions [27]. 

Clear abstractions support several security strategies and 

principles, but are particularly important for access mediation 

and isolation strategies. This due to their importance in defining 

relationships and behaviors between various subsystem 

elements, functions, users, dependencies, and data exchanges 

(i.e., all the SoI’s important objects and their associations). For 

example, information dependencies must be detailed before 

access control rules can be appropriately defined. On a related 
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note, clear abstractions also imply that such dependencies can 

be fully known across the SoI’s users, subsystems, components, 

supporting/enabling systems, and various forms of data. 

2) Least Common Mechanism 

Longstanding design guidance such as “high cohesion” & 

“low coupling” are implicit in this design principle as like 

functionality is singularly consolidated, which reduces the 

security related development and analysis effort [28]. In general, 

a single instantiation of a mechanism (security or otherwise) 

allows for more efficient use of limited resources throughout the 

system lifecycle. Ideally, this principle also contributes to the 

development of more effective security mechanisms, since the 

design and engineering effort can be more focused. 

Both access mediation and isolation strategies are implicit in 

this principle, while also reducing system complexity. 

Implementing a single mechanism can significantly reduce the 

complexity of access control rules, and thus, supports both 

reduced lifecycle costs as there are not multiple instantiations to 

document and modify. 

3) Modularity and Layering 

Modularity and layering are fundamental principles across 

both systems engineering and software disciplines [8], [28]; they 

serve to increase understandability by logically structuring and 

delineating dependencies between functional entities and data 

structures. The essential role of this design-focused principle is 

reflected in its direct support to several security strategies and 

principles to include access mediation, isolation, minimal 

complexity, hierarchical decomposition, and separation of 

applications into specific domains. 

Commonly, this principle is used to facilitate the realization 

of security policy by restricting privileges of users, functions, 

and entities (i.e., access control). It is also important to recognize 

that resiliency is often achieved through modularity and layering 

which limits the damage inflicted by an attack or failure. For 

example, a secure system architecture minimizes dependencies 

and interactions such that when a component is compromised, it 

does not render other mission essential functionality inoperable. 

Lastly, it is worth stating that “layering” is not the same as 

“defense in depth” – the former is focused on the efficient design 

of a system, while the latter is focused on redundant means for 

protecting a system. 

4) Ordered Dependencies (Partially) 

Although not entirely necessary, the term “partially” is 

typically included in the principle title to imply that not all layers 

(and modules) can be strictly ordered. More simply, this 

principle suggests that higher layers should depend on lower 

layers and multi-layer circular dependencies should be avoided. 

Logically structuring and minimizing dependencies 

contributes to isolation between layers, increases 

understandability of the design, reduces system complexity in 

the implementation, and facilitates test and analysis. A system 

TABLE I 

DESIGN PRINCIPLE DEFINITIONS DERIVED FROM NIST SP 800-160, APPENDIX F [5]. 

Principle Name Definition (note, descriptions are slightly modified from NIST SP 800-160 to emphasize system-level applicability) 

Clear Abstractions 
A system should have simple, well-defined interfaces and functions to provide a consistent and intuitive view of the SoI’s data, 

data elements, and how the data is utilized and managed. 

Least Common 

Mechanism 

If multiple components in a system require the same functionality (e.g., a necessary security feature), the desired functionality 

should be built into a single mechanism (physical or logical) which can be used by all components who require it. 

Modularity and Layering 
Modularity organizes and isolates functionality and related data flows into well-defined logical groupings (conceptual elements 

or “objects”), while layering orders and defines relationships between entities and their associated data flows. 

Ordered Dependencies 

(Partially)* 

Ordered dependencies refers to the logical arrangement of layers (and modules) such that linear (or hierarchical) functional calls, 

synchronization, and other dependencies are achieved, and circular dependencies are minimized. 

Efficiently Mediated 

Access 

Policy enforcement mechanisms (physical and logical) should utilize the least common mechanism available while satisfying 

stakeholder requirements within expressed constraints. 

Minimized Sharing 
No resources should be shared between system components (e.g., elements, processes, etc.) unless it is absolutely necessary to do 

so. 

Reduced Complexity The system design should be as simple and small as possible. 

Secure Evolvability 
A system should be developed to facilitate secure maintenance when changes to its functionality, architecture, structure, interfaces, 

interconnections, or its functionality configuration occur. 

Trusted Components A component must be trustworthy to at least a level commensurate with the security dependencies it supports. 

Hierarchical Trust 
Building upon the principle of trusted components, hierarchical trust provides the basis for trustworthiness reasoning when 

composing a system from a variety of components with differing trustworthiness.  

Commensurate 

Protection* 

The degree of protection provided to a component must be commensurate with its trustworthiness – as the trust placed in a 

component increases, the protection against unauthorized modification of the component should increase to the same degree. 

Hierarchical Protection A component need not be protected from more trustworthy components. 

Minimize Trusted 

Components* 
A system should not have extraneous trusted elements, components, data, or functions. 

Least Privilege 
Each system element (e.g., enabling systems, components, data elements, users, etc.) should be allocated sufficient privileges to 

accomplish its specified function, but no more. 

Multi-Factor 

Permissions* 

Requiring multiple authorizing entities or operators to provide consent before a highly critical operation or access to highly 

sensitive data, information, or resources is granted. 

Self-Reliance* Systems should minimize their reliance on other systems, elements, or components for their own trustworthiness. 

Secure Composition* 
The composition of various components that enforce the same security policy should result in a system that enforces that policy 

at least as well as the individual components do. 

Trusted Communication 
Each communication channel (i.e., an interface, link, or network) must be trustworthy to a level commensurate with the security 

dependencies it supports. 

* denotes that the principle’s name has been slightly modified to improve understandability and applicability for a broad developmental audience. 
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with partially ordered dependencies is also less likely to 

negatively impact associated functions and elements, thus 

contributing to survivability. Additionally, partially ordered 

dependencies helps to preserve trustworthiness by avoiding 

linkages between components with lower and higher trust levels. 

5) Efficiently Mediating Access 

Efficiently and effectively mediating access is typically 

achieved through an operating system configured to enforce a 

policy on the use of system resources. For example, preventing 

users from accessing privileged or non-essential system 

functionality serves to protect the user(s) and SoI. Moreover, 

due to the principles of least common mechanism much of the 

desired protection capability is resident in a single mechanism 

which can contribute to performance bottlenecks. Thus, the 

design engineer must carefully consider the means for mediating 

access (e.g., technological solutions, process constraints, 

personnel restrictions, etc.) as to not negatively impact system 

performance or the desired protection capability. 

This principle is directly related to the realization of the access  

mediation and isolation strategies to include people, processes, 

and technologies. Additionally, it is related to a number of other 

security principles such as minimizing sharing, trust, and 

hierarchical structures. It is also worth noting that while 

verification and validation should be accounted for in the 

development of sound security principles, often these 

requirements are not sufficiently addressed; thus, independently 

addressing the application of this principle is important because 

analytically evidences are used to substantiate claims of 

trustworthiness which support the achievement of security 

objectives, as well as, determinations of risk(s). 

6) Minimized Sharing  

In contrast to modern trends of sharing system resources and 

access to information, this principle stresses limited sharing of 

system resources (e.g., hardware, software, data, people, etc.). 

In particular, the sharing of data outside the SoI merits close 

scrutiny to avoid unauthorized access, disclosure, use, 

tampering, or modification. Internal to the system, developers 

must be mindful as to not hinder mission essential functions 

during diligent application. 
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Fig. 2. Mapping of System Security Strategies to Design Principles. 
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This principle directly supports the access mediation and 

isolation strategies by reducing the number of interactions 

between users and system elements. Curtailing the sharing of 

resources effectively creates boundaries within the SoI to protect 

critical functions, simplify design and implementation 

(minimizing the attack surface), and facilitates defense in depth. 

While limiting shared resources may be advantageous for 

security reasons, this principle may be viewed as being in 

conflict with other security strategies and principles such as least 

common mechanism, so the benefits of each must be fully 

considered. 

7) Reduced Complexity  

There are several potential benefits to simpler systems 

including: increased understandability, ease of analysis, less 

prone to errors, fewer vulnerabilities, and lower costs. 

Moreover, these benefits can be realized across the entire 

development lifecycle (i.e., from concept to implementation, 

operation, sustainment, and retirement) which enables the 

desired security policy to be more effectively achieved. 

Reduced complexity is particularly important for assessing 

access mediation mechanisms to demonstrate that the desired 

protection capability is achieved. Clarity of design enables the 

identification of potential vulnerabilities during testing (i.e., 

verification and validation) and their associated mitigations. 

Because of the additional insight gained through simplicity, this 

principle strongly contributes to nearly every design principle. 

Additionally, simpler designs help facilitate isolation through 

clarity of design and minimizing unnecessary interdependencies 

which can also contribute to system survivability (note, taken 

too far simplicity can serve to eliminate isolation mechanisms).  

8) Secure Evolvabilty 

This principle addresses both planned and unplanned 

updates, modifications, reconfigurability, and agility. Although 

primarily executed during operations and maintenance phases of 

the lifecycle, the system must be carefully designed and 

engineered to facilitate secure modifications. For example, if 

change is “planned-in” from the conceptual phase, secure 

evolvability can be “designed-in” to produce a more robust 

system that is built to be upgraded in a secure manner rather than 

ad hoc patching and after-the-fact solutions which attempt to 

adapt to the changing threat and operational environment [29].  

Acknowledging that complex systems often have long 

lifecycles and face a dynamic set of constantly evolving threats, 

this principle is key to improving system security and 

survivability. More specifically, it is critical for facilitating 

secure software and hardware upgrades, modifications, and 

patches during operations and sustainment. Thus, this principle 

supports nearly all security strategies and principles throughout 

the SoI’s lifecycle. Focusing on secure evolvability early in the 

lifecycle also has the potential to drive down engineering costs 

and facilitate less complex mitigations to future threats; 

however, it can negatively impact access mediations because of 

poor design and implementation choices. 

9) Trusted Components (and Functionality) 

This principle highlights that the trust chain is only as strong 

as its weakest link; thus, each component’s trustworthiness must 

be commensurate with the broader SoI’s desired trustworthiness 

for a given security functionality. While “trust” is often applied 

to low-level physical components, this security principle is 

equally applicable to subsystems, mission critical functionality, 

operators and support personnel, logistical activities, and 

communication channels. 

This principle is foundational for the development of assured 

systems and operations as it facilitates reasoning about the 

evidences for decisions of trustworthiness, and more specifically 

it highlights where the SoI’s trust chain is being limited by less 

trustworthy link(s). More concretely, trusted components (i.e., 

their functionality) enable the construction of trustworthy secure 

systems such that trustworthiness is not inadvertently 

diminished or misplaced as described in the hierarchical trust 

principle and supported by other structural-oriented principles. 

10) Hierarchical Trust  

The principle of hierarchical trust builds on the principle of 

trusted components and stresses the need to look vertically along 

trust dependency chains to ensure lower trust components (and 

functions) do not diminish the system’s overall security posture. 

More generally, hierarchical trust can be interpreted as the 

“architecting” of a trustworthy system from a variety of 

components with differing trust levels. For example, if a more 

trustworthy component depends upon a less trustworthy 

component, this would in effect, put the components in the same 

“less trustworthy” equivalence class per the principle of trusted 

components. Formally, the system forms a “partial ordering” if 

it preserves the principle of trusted components. 

Hierarchical trust is essential to achieving (and reasoning 

about) the trustworthy security of complex systems composed 

of various components (and dependencies) at differing levels of 

trustworthiness. In particular, the trust principles (#9 and #10), 

along with partial ordering, provide evidences for reasoning 

about and justifying trustworthiness decisions. Within the 

context of NIST SP 800-160, the hierarchical trust principle 

supports the achievement of trustworthiness in the security 

strategies and depends upon the correct implementation of 

several design principles. 

11) Commensurate Protection 

Formally named “inverse modification threshold”, this 

principle suggests that the degree of protection provided to a 

component (or security function) should be commensurate with 

its trustworthiness. Thus, the higher a component’s/function’s 

value to the trust chain, the more protection it should warrant. 

This principle expressly builds on the principles of trusted 

components and hierarchical trust, and is supported by several 

other security principles. This principle specifically contributes 

to access mediation and defense in depth strategies, and 

indirectly supports many principles as well. By deliberately 

focusing on the SoI’s most critical components and functions, 

this principle ensures that adequate trustworthiness is designed 

into the system with supporting evidences. 

12) Hierarchical Protection  

While relatively straightforward, this principle is important 

for properly scoping and bounding the security engineering 

effort. Approaches such as the U.S. DoD’s criticality analysis 

can be used to help focus limited security resources [12]; for 

example, the most critical components (i.e., those which execute 

mission essential functions) in a combat weapon system must be 

protected from other less trustworthy components. It is also 

worth noting that operators and other personnel should also be 

considered in the application of this principle. 
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This principle supports all three strategies by protecting the 

SoI from untrusted components, functions, data, and users with 

lower trustworthiness and reserving higher level privileges for 

more trusted entities. Regarding security design decisions, this 

principle also guides the application of architectural and 

component level principles to ensure security resources are not 

wasted on protections against higher trust level components. 

13) Minimize Trusted Components  

This principle suggests that the SoI should contain as few 

trustworthy components (or systems elements) as possible. 

Somewhat counter-intuitive to security practitioners, when 

implemented properly this principle discourages extra security 

components, features, and technologies (which are also likely to 

introduce additional vulnerabilities). 

Minimizing the number of trusted components simplifies the 

testing associated with access mediation and other protection 

principles such as hierarchical trust. Much like hierarchical 

protection this principle also helps to minimize costs and 

complexity of the desired protection capability. Arguably, the 

resulting simplicity also enhances survivability. 

14) Least Privilege  

While “least privilege” is typically understood as the 

granting and revoking of user privileges during a system’s 

operation, it is an essential design principle for system security 

development in terms of the SoI’s internal structure and 

organization, as well as, the providing capability for the 

assignment of user privileges. By allocating only the minimum 

privileges necessary to each component, when one is misused, 

damaged or compromised the impact to the system will be 

limited by the scope of the privileges granted. Additionally, it is 

important to note that this principle has widespread applicability 

for securing both internal and external interactions (e.g., system 

elements, supporting/enabling systems, data processing, data 

storage).  

 Thus, the principle of least privilege is pervasive and directly 

supports access mediation, often with the outcome of logical or 

physical isolation. This helps to minimize the impact of potential 

failures, corruption, misuse, and malicious activities. Least 

privilege also serves to reduce interdependencies, which 

simplifies component design, implementation, and analysis. 

Additionally, applying the principle of least privilege can 

improve survivability as an attacker’s movements are limited 

when they are denied privilege escalation, a key tactic employed 

by advanced persistent threats. 

15) Proportional Permissions 

Somewhat akin to two-person authentication—a 

well-established security best practice in multiple domains such 

as financial [19] and flight safety [30]—the use of multiple 

individuals, organizations, or system entities to grant access 

decreases the likelihood of abuse and provides additional 

protection that no single accident, deception, or breach of trust 

is sufficient to enable an unrecoverable action. Note, although 

typically thought about as parallel authorization, proportional 

permissions can be serial in nature across two or more entities. 

This principle directly contributes to the access mediation 

strategy and defense in depth, while also enhancing 

survivability by protecting mission critical information, 

components, and processes. However, it is also important to 

note that relying on multiple valid authentications can also 

negatively impact availability and/or survivability. Lastly, the 

predicate permissions principle adds complexity into the system 

design, so its usage needs to be considered carefully within the 

engineering trade space. 

16) Self-Reliance 

In addition to minimizing the SoI’s reliance on other systems 

for its own trustworthiness, this principle should also be applied 

to subsystem elements, objects, and functions which require 

high levels of trustworthiness. Application of this principle 

minimizes the number of dependencies (e.g., 

supporting/enabling systems, data feeds, and personnel 

interactions). Perhaps, the importance of this principle is best 

illustrated with a counterexample where system developers 

often assume trustworthiness of input data, which in many cases 

is unmerited and ultimately degrades the SoI’s trustworthiness. 

Primarily, this principle serves to isolate the SoI which 

reduces its attack surface and eliminates the system’s 

susceptibility to vulnerabilities inherent in external 

links/systems, especially those it cannot control. If the principle 

is applied within the system’s architecture, it can also serve to 

isolate mission critical functions and components. Self-reliance 

can also help to reduce design and implementation complexity, 

increase testability and improve system survivability. 

17) Secure Composition 

Formally titled “Secure Distributed Composition”, this 

principle mitigates undesirable emergent security behaviors 

resulting from interactions across the SoI’s functions, 

components, and supporting/enabling systems. To ensure the 

desired system-wide policy enforcement is correct, the SoI must 

be thoroughly understood and analyzed; this is particularly 

important for distributed system architecture built from 

heterogeneous systems. 

This principle is related to all of the security strategies and 

principles but is strongly dependent upon the hierarchical trust 

and hierarchical protection principles to ensure commensurate 

implementation of security policy across isolated systems (and 

their respective permission levels). Because this principle 

includes the composition of distributed features, components, 

and system elements, it necessarily touches nearly all design 

principles. Application of this principle also exacerbates the 

security principles which pertain to communication between 

components where the developer must work to identify and 

assess emergent behaviors and properties. 

18) Trusted Communication 

For modern systems of interest, the trusted communication 

security principle is critically important, especially when 

considering advanced cyber-physical systems built to survive 

highly contested cyberspace environments. In contrast to 

focusing on the trustworthiness of physical components, this 

principle ensures protection is more adequately considered at the 

SoI’s most susceptible points – its communication links. This is 

because communication channels are generally available to 

adversaries for eavesdropping, reverse engineering, and 

tampering which can negatively affect data availability and 

integrity. Formally, this principle requires that each 

communication channel be trustworthy to a level commensurate 

with the security functions it supports. 
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This principle is similar and related to a number of other 

design principles and is often achieved through conventional 

protection mechanisms such as encryption, which also 

contributes to access mediation and isolation security strategies. 

In particular, this principle ensures weaknesses are not 

introduced via susceptible communication channels and 

ensuring communication channels have the same level of 

protection as the components they support. 

V. CONCLUSIONS  

This work examines the NIST SP 800-160 systems security 

strategies and design principles, and more specifically offers a 

mapping of conceptual strategies to concrete security principles 

that can be more effectively designed-for, built-in, and tested. 

This work is part of a series of works which aims to assist 

developers, owners, and operators in understanding and 

achieving a rigorous SSE approach. Future work includes 

studying the efficient application of these principles and their 

applicability to cyber resiliency, as well as identifying 

appropriate technical performance measurements and criteria. 
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